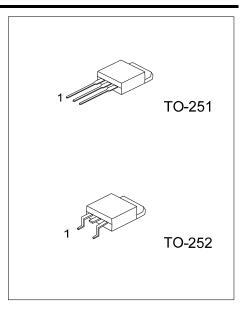
UNISONIC TECHNOLOGIES CO., LTD

2SD1802

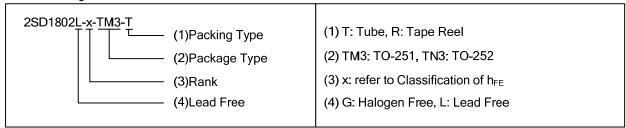
NPN SILICON TRANSISTOR


HIGH CURRENT SWITCHING **APPLICATION**

DESCRIPTION

The UTC 2SD1802 applies to voltage regulators, relay drivers, lamp drivers and electrical equipment.

FEATURES


- * Adoption of FBET, MBIT processes
- * Large current capacity and wide ASO
- * Low collector-to-emitter saturation voltage
- * Fast switching speed

ORDERING INFORMATION

Ordering	Daakasa	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing
2SD1802L-x-TM3-T	2SD1802G-x-TM3-T	TO-251	В	С	Е	Tube
2SD1802L-x-TN3-T	2SD1802G-x-TN3-T	TO-252	В	С	Е	Tube
2SD1802L-x-TN3-R	2SD1802G-x-TN3-R	TO-252	В	С	Е	Tape Reel

Note: Pin Assignment: B: Base C: Collector E: Emitter

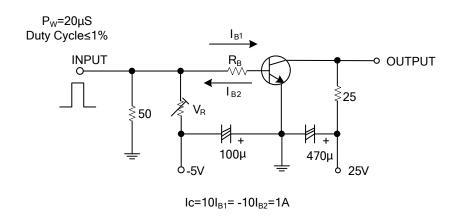
www.unisonic.com.tw 1 of 3 QW-R209-001.Ba

■ **ABSOLUTE MAXIMUM RATING** (T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	V_{CEO}	50	V
Emitter-Base Voltage	V_{EBO}	6	V
Collector Power Dissipation		1	10/
T _C =25°ℂ	P _c	15	W
Collector Current (DC)	Ic	3	Α
Collector Current (PULSE)	I _{CP}	6	Α
Junction Temperature	TJ	150	$^{\circ}\mathbb{C}$
Storage Temperature	T _{STG}	-55 ~ + 150	°C

Note 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector Cutoff Current	I _{CBO}	V _{CB} =40V, I _E =0			1	μΑ
Emitter Cutoff Current	I _{EBO}	V_{EB} =4V, I_C =0			1	μΑ
DC Current Cain (note)	h _{FE1}	V _{CE} =2V, I _C =100mA	100		560	
DC Current Gain (note)	h _{FE2}	V_{CE} =2V, I_{C} =3A	35			
Gain-Bandwidth Product	f _T	V _{CE} =10V, I _C =50mA		150		MHz
Output Capacitance	Сов	V _{CB} =10V, f=1MHz		25		pF
C-E Saturation Voltage	$V_{CE(SAT)}$	I _C = 2A, I _B =100mA		0.19	0.5	V
B-E Saturation Voltage	V _{BE(SAT)}	I _C = 2A, I _B =100mA		0.94	1.2	V
C-B Breakdown Voltage	V _{(BR)CBO}	$I_C = 10 \mu A, I_E = 0$	60			V
C-E Breakdown Voltage	$V_{(BR)CEO}$	I _C = 1mA, R _{BE} =∞	50			V
E-B Breakdown Voltage	$V_{(BR)EBO}$	I _E = 10μA, I _C =0	6			V
Turn-on Time	ton	See test circuit		70		ns
Storage Time	t _{STG}	See test circuit		650		ns
Fall Time	t _F	See test circuit		35		ns

CLASSIFICATION OF h_{FE1}

RANK	R	S	Т	U	
RANGE	100-200	140-280	200-400	280-560	

^{2.} The device is guaranteed to meet performance specification within 0° C \sim 70 $^{\circ}$ C operating temperature range and assured by design from -20° C \sim 85 $^{\circ}$ C.

■ **TEST CIRCUIT** (Unit : resistance : Ω, capacitance : F)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.